

Computer Organization and Architecture

Internal Memory

Semiconductor Memory Types

Метогу Туре	Category	Erasure	Write Mechanism	Volatility
Random-access memory (RAM)	Read-write memory	Electrically, byte-level	Electrically	Volatile
Read-only memory (ROM)	Read-only memory	Not possible	Masks	
Programmable ROM (PROM)				Nonvolatile
Erasable PROM (EPROM)	Read-mostly memory	UV light, chip-level	Electrically	
Electrically Erasable PROM (EEPROM)		Electrically, byte-level		
Flash memory		Electrically, block-level		

Semiconductor Memory

RAM

- Misnamed as all semiconductor memory is random access
- Read/Write
- Volatile
- Temporary storage
- Static or dynamic

Memory Cell Operation

Dynamic RAM

- Bits stored as charge in capacitors
- Charges leak
- Need refreshing even when powered
- Simpler construction
- Smaller per bit
- Less expensive
- Need refresh circuits
- Slower
- Main memory
- Essentially analogue
 - Level of charge determines value

Static RAM

- Bits stored as on/off switches
- No charges to leak
- No refreshing needed when powered
- More complex construction
- Larger per bit
- More expensive
- Does not need refresh circuits
- Faster
- Cache
- Digital
 - Uses flip-flops

SRAM v DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Larger memory units
- Static
 - Faster
 - Cache

Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Microprogramming
- Library subroutines
- Systems programs (BIOS)
- Function tables

Types of ROM

- Written during manufacture
 - Very expensive for small runs
- Programmable (once)
 - PROM
 - Needs special equipment to program
- Read "mostly"
 - Erasable Programmable (EPROM)
 - Erased by UV
 - Electrically Erasable (EEPROM)
 - Takes much longer to write than read
 - Flash memory
 - Erase whole memory electrically

Error Correction

- Hard Failure
 - Permanent defect
- Soft Error
 - Random, non-destructive
 - No permanent damage to memory
- Detected using Hamming error correcting code

Interleaved Memory

- Collection of DRAM chips
- Grouped into memory bank
- Banks independently service read or write
- requests
- K banks can service k requests simultaneously.
- Increasing memory read or write rate by a factor of k

Hamming Error-Checking Code

Error Checking Overhead

	Single-Error Correction		Single-Error Correction/	
			Double-Error Detection	
Data Bits	Check Bits	% Increase	Check Bits	% Increase
8	4	50	5	62.5
16	5	31.25	6	37.5
32	6	18.75	7	21.875
64	7	10.94	8	12.5
128	8	6.25	9	7.03
256	9	3.52	10	3.91

Error Correcting Code Function

Advanced DRAM Organization

- Basic DRAM same since first RAM chips
- Enhanced DRAM
 - Contains small SRAM as well
 - SRAM holds last line read (c.f. Cache!)
- Cache DRAM
 - Larger SRAM component
 - Use as cache or serial buffer

Synchronous DRAM (SDRAM)

- Access is synchronized with an external clock
- Address is presented to RAM
- RAM finds data (CPU waits in conventional DRAM)
- Since SDRAM moves data in time with system clock, CPU knows when data will be ready
- CPU does not have to wait, it can do something else
- Burst mode allows SDRAM to set up stream of data and fire it out in <u>block</u>
- DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)

IBM 64Mb SDRAM

SDRAM Operation

Figure 5.13 SDRAM Read Timing (Burst Length = $4, \overline{CAS}$ latency = 2)

Rambus DRAM

- Adopted by Intel for Pentium & Itanium processors
- It has become the main competitor to SDRAM
- It has a vertical packages with all pins on one side
- Data exchange over 28 wires < cm long</p>
- Bus addresses up to 320 RDRAM chips and rated at 1.6Gbps
- It delivers address and control information using asynchronous block protocol
- After an initial 480ns access time. This produces the 1.6 GBps data rate.

RAMBUS Diagram

Double-Data-Rate SDRAM(DDR SDRAM)

- SDRAM can only send data once per clock
- Double-data-rate SDRAM can send data
- twice per clock cycle
- Rising edge of the clock pulse and falling edge.
- Fig.5.15 shows the basic timing for the DDR read

DDR SDRAM Read Timing

RAS = row address select CAS = column address select DQ = data (in or out) DQS = DQ select

Cache DRAM

- It developed by Mitsubishi.
- Integrates small SRAM cache (16 kb) onto generic DRAM chip
- Used as true cache
 - 64-bit lines
 - Effective for ordinary random access
- To support serial access of block of data
 - refresh bit-mapped screen
 - CDRAM can prefetch data from DRAM into SRAM
 - buffer
 - Subsequent accesses solely to SRAM

